Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20631, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996500

RESUMO

The prevalence of Mycobacterium avium complex-pulmonary disease (MAC-PD) has become a growing concern worldwide, and current treatments involving macrolides (clarithromycin [CLR] or azithromycin), ethambutol, and rifampicin have limited success, highlighting the need for better therapeutic strategies. Recently, oxazolidinone drugs have been identified as novel anti-tuberculosis drugs effective against drug-resistant M. tuberculosis. However, the effects of these drugs against MAC are still controversial due to limited data. Here, we first evaluated the intracellular anti-MAC activities of two oxazolidinone drugs, linezolid (LZD) and delpazolid (DZD), against 10 macrolide-susceptible MAC strains and one macrolide-resistant M. avium strain in murine bone marrow-derived macrophages (BMDMs) and found that both drugs demonstrated similar potential. The synergistic efficacies with CLR were then determined in a chronic progressive MAC-PD murine model by initiating a 4-week treatment at 8 weeks post-infection. Upon assessment of bacterial burdens and inflamed lesions, oxazolidinone drugs exhibited no anti-MAC effect, and there was no significant difference in the synergistic effect of CLR between LZD and DZD. These findings suggest that oxazolidinone drugs inhibit intracellular bacterial growth, even against macrolide-resistant MAC, but their clinical application requires further consideration.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Oxazolidinonas , Humanos , Camundongos , Animais , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Oxazolidinonas/farmacologia , Oxazolidinonas/uso terapêutico , Antibacterianos/farmacologia , Antituberculosos/farmacologia , Claritromicina/uso terapêutico , Macrolídeos/farmacologia , Pneumopatias/tratamento farmacológico
2.
Microbiol Spectr ; : e0182523, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594284

RESUMO

Unsatisfactory outcomes following long-term multidrug treatment in patients with Mycobacterium avium complex (MAC) pulmonary disease have urged us to develop novel antibiotics. Thiopeptides, a class of peptide antibiotics derived from natural products, have potential as drug candidates that target bacterial ribosomes, but drug development has been hampered due to their extremely poor solubility. Here, we evaluated three new compounds (AJ-037, AJ-039, and AJ-206) derived from the thiopeptide micrococcin P2 with enhanced aqueous solubility; the derivatives were generated based on structure-activity relationship analysis. We conducted in vitro drug susceptibility and intracellular antimycobacterial activity testing of the three thiopeptide derivatives against various MAC strains, including macrolide-resistant MAC clinical isolates. These compounds showed low MICs against MAC, similar to that of clarithromycin (CLR). In particular, two compounds, AJ-037 and AJ-206, had intracellular antimycobacterial activities, along with synergistic effects with CLR, and inhibited the growth of MAC inside macrophages. Moreover, these two compounds showed in vitro and intracellular anti-MAC activities against macrolide-resistant MAC strains without showing cross-resistance with CLR. Taken together, the results of the current study suggest that AJ-037 and AJ-206 can be promising anti-MAC agents for the treatment of MAC infection, including for macrolide-resistant MAC strains. IMPORTANCE Novel antibiotics for the treatment of MAC infection are urgently needed because the treatment outcomes using the standard regimen for Mycobacterium avium complex (MAC) pulmonary disease remain unsatisfactory. Here, we evaluated three novel thiopeptide derivatives (AJ-037, AJ-039, and AJ-206) derived from the thiopeptide micrococcin P2, and they were confirmed to be effective against macrolide-susceptible and macrolide-resistant MAC. Our thiopeptide derivatives have enhanced aqueous solubility through structural modifications of poorly soluble thiopeptides. The thiopeptide derivatives showed minimal inhibitory concentrations against MAC that were comparable to clarithromycin (CLR). Notably, two compounds, AJ-037 and AJ-206, exhibited intracellular antimycobacterial activities and acted synergistically with CLR to hinder the growth of MAC within macrophages. Additionally, these compounds demonstrated in vitro and intracellular anti-MAC activities against macrolide-resistant MAC strains without showing any cross-resistance with CLR. We believe that AJ-037 and AJ-206 can be promising anti-MAC agents for the treatment of MAC infections, including macrolide-resistant MAC strains.

3.
Antimicrob Agents Chemother ; 66(9): e0076222, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36040172

RESUMO

Accumulating evidence suggests that drug repurposing has drawn attention as an anticipative strategy for controlling tuberculosis (TB), considering the dwindling drug discovery and development pipeline. In this study, we explored the antigout drug febuxostat and evaluated its antibacterial activity against Mycobacterium species. Based on MIC evaluation, we found that febuxostat treatment significantly inhibited mycobacterial growth, especially that of Mycobacterium tuberculosis (Mtb) and its phylogenetically close neighbors, M. bovis, M. kansasii, and M. shinjukuense, but these microorganisms were not affected by allopurinol and topiroxostat, which belong to a similar category of antigout drugs. Febuxostat concentration-dependently affected Mtb and durably mediated inhibitory functions (duration, 10 weeks maximum), as evidenced by resazurin microtiter assay, time-kill curve analysis, phenotypic susceptibility test, and the Bactec MGIT 960 system. Based on these results, we determined whether the drug shows antimycobacterial activity against Mtb inside murine bone marrow-derived macrophages (BMDMs). Notably, febuxostat markedly suppressed the intracellular growth of Mtb in a dose-dependent manner without affecting the viability of BMDMs. Moreover, orally administered febuxostat was efficacious in a murine model of TB with reduced bacterial loads in both the lung and spleen without the exacerbation of lung inflammation, which highlights the drug potency. Taken together, unexpectedly, our data demonstrated that febuxostat has the potential for treating TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Alopurinol , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Febuxostat/farmacologia , Febuxostat/uso terapêutico , Camundongos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
4.
Virulence ; 13(1): 808-832, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35499090

RESUMO

Mycobacterium avium complex (MAC) causing pulmonary disease in humanshas emerged worldwide. Thus, effective strategies simultaneously aiming to prevent MAC infection and accelerate therapeutic efficacy are required. To this end, subunit vaccine-induced protection against a well-defined virulent Mycobacterium avium (Mav) isolate was assessed as a preventative and therapeutic modality in murine models. Mav-derived culture filtrate antigen (CFA) was used as a vaccine antigen with glucopyranosyl lipid A stable emulsion (GLA-SE) or GLA-SE plus cyclic-di-GMP (GLA-SE/CDG), and we compared the immunogenicities, protective efficacies and immune correlates. Interestingly, CFA+GLA-SE/CDG immunization induced greater CFA-specific Th1/Th17 responses in both the lung and spleen than among the tested groups. Consequently, protective efficacy was optimally achieved with CFA+GLA-SE/CDG by significantly reducing bacterial loads along with long-lasting maintenance of antigen-specific Th1/Th17 cytokine-producing multifunctional T cell responses and relevant cytokine productions. Thus, we employed this subunit vaccine as an adjunct to antibiotic treatment. However, this vaccine was ineffective in further reducing bacterial loads. Collectively, our study demonstrates that strong Mav CFA-specific Th1/Th17 responses are critical for preventative protection against Mav infection but may be ineffective or even detrimental in an established and progressive chronic disease, indicating that different approaches to combating Mav infection are necessary according to vaccination purposes.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Adjuvantes Imunológicos/farmacologia , Animais , Antibacterianos/uso terapêutico , Doença Crônica , Citocinas , Imunidade , Camundongos , Mycobacterium avium , Células Th1 , Células Th17 , Tuberculose/microbiologia , Vacinas contra a Tuberculose/farmacologia , Vacinação , Vacinas de Subunidades
5.
Br J Pharmacol ; 179(15): 3951-3969, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35301712

RESUMO

BACKGROUND AND PURPOSE: To diversify and expand possible tuberculosis (TB) drug candidates and maximize limited global resources, we investigated the effect of colchicine, an FDA-approved anti-gout drug, against Mycobacterium tuberculosis (Mtb) infection because of its immune-modulating effects. EXPERIMENTAL APPROACH: We evaluated the intracellular anti-Mtb activity of different concentrations of colchicine in murine bone marrow-derived macrophages (BMDMs). To elucidate the underlying mechanism, RNA sequencing, biological and chemical inhibition assays, and Western blot, quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA), and immunohistochemical analyses were employed. Finally, type I interferon-dependent highly TB-susceptible A/J mice were challenged with virulent Mtb H37Rv, and the host-directed therapeutic effect of oral colchicine administration on bacterial burdens and lung inflammation was assessed 30 days post-infection (2.5 mg·kg-1 every 2 days). KEY RESULTS: Colchicine reinforced the anti-Mtb activity of BMDMs without affecting cell viability, indicating that colchicine facilitated macrophage immune activation upon Mtb infection. The results from RNA sequencing, NLRP3 knockout BMDM, IL-1 receptor blockade, and immunohistochemistry analyses revealed that this unexpected intracellular anti-Mtb activity of colchicine was mediated through NLRP3-dependent IL-1ß signalling and Cox-2-regulated PGE2 production in macrophages. Consequently, the TB-susceptible A/J mouse model showed remarkable protection, with decreased bacterial loads in both the lungs and spleens of oral colchicine-treated mice, with significantly elevated Cox-2 expression at infection sites. CONCLUSIONS AND IMPLICATIONS: The repurposing of colchicine against Mtb infection in this study highlights its unique function in macrophages upon Mtb infection and its novel potential use in treating TB as host-directed or adjunctive therapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Colchicina/metabolismo , Colchicina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/farmacologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
6.
Cell Biol Toxicol ; 38(1): 147-165, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33665778

RESUMO

Abnormal expression of claudin-1 (CLDN1) has important roles in carcinogenesis and metastasis in various cancers. The role of CLDN1 in human oral squamous cell carcinoma (OSCC) remains unknown. Here, we report the functional role of CLDN1 in metastasis of human OSCC, as a potential target regulated by withaferin A. From gene expression profiling with microarray technology, we found that the majority of notable differentially expressed genes were classified into migration/invasion category. Withaferin A impaired the motility of human OSCC cells in vitro and suppressed metastatic nodule formation in an in vivo metastasis model, both associated with reduced CLDN1. CLDN1 overexpression enhanced metastatic nodule formation in vivo, resulting in severe metastatic lesions in lung tissue. Moreover, CLDN1 expression was positively correlated to lymphatic metastasis in OSCC patients. The impaired motility of human OSCC cells upon withaferin A treatment was restored by CLDN1 overexpression. Furthermore, upregulation of let-7a induced by withaferin A was inversely correlated to CLDN1 expression. Overall, these give us an insight into the function of CLDN1 for prognosis and treatment of human OSCC, substantiating further investigation into the use of withaferin A as good anti-metastatic drug candidate.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Claudina-1/genética , Claudina-1/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Vitanolídeos
7.
Sci Rep ; 10(1): 6094, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269291

RESUMO

The homeobox domain-containing transcription factors play an important role in the growth, development, and secondary metabolism in fungi and other eukaryotes. In this study, we characterized the roles of the genes coding for homeobox-type proteins in the model organism Aspergillus nidulans. To examine their roles in A. nidulans, the deletion mutant strains for each gene coding for homeobox-type protein were generated, and their phenotypes were examined. Phenotypic analyses revealed that two homeobox proteins, HbxA and HbxB, were required for conidia production. Deletion of hbxA caused abnormal conidiophore production, decreased the number of conidia in both light and dark conditions, and decreased the size of cleistothecia structures. Overexpressing hbxA enhanced the production of asexual spores and formation of conidiophore under the liquid submerged conditions. The hbxB deletion mutant strains exhibited decreased asexual spore production but increased cleistothecia production. The absence of hbxB decreased the trehalose content in asexual spores and increased their sensitivity against thermal and oxidative stresses. The ΔhbxA strains produced more sterigmatocystin, which was decreased in the ΔhbxB strain. Overall, our results show that HbxA and HbxB play crucial roles in the differentiation and secondary metabolism of the fungus A. nidulans.


Assuntos
Aspergillus nidulans/genética , Proteínas Fúngicas/metabolismo , Proteínas de Homeodomínio/metabolismo , Aspergillus nidulans/metabolismo , Aspergillus nidulans/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Homeodomínio/genética , Estresse Oxidativo , Reprodução Assexuada , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia
8.
Front Microbiol ; 11: 626216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519787

RESUMO

Treatment outcomes using the standard regimen (a macrolide, ethambutol, and rifampicin) for Mycobacterium avium complex-pulmonary disease (MAC-PD) remain unsatisfactory. Thus, improved treatment regimens for MAC-PD are required. Clofazimine has recently been revisited as an effective drug against mycobacterial infection. We performed a comparison between the standard regimen and an alternative regimen (replacing the rifampicin of the standard regimen with clofazimine) based on the intracellular anti-MAC activities of the individual drugs in a murine model of chronic progressive MAC-pulmonary infection (MAC-PI). The intracellular anti-MAC activities of the individual drugs and their combinations in murine bone marrow-derived macrophages (BMDMs) were determined. The treatment efficacies of the standard and clofazimine-containing regimens were evaluated in mice chronically infected with M. avium by initiating 2- and 4-week treatment at 8 weeks post-infection. Bacterial loads in the lung, spleen, and liver were assessed along with lung inflammation. Insufficient intracellular anti-MAC activity of rifampicin in BMDMs was recorded despite its low in vitro minimum inhibitory concentrations (MICs), whereas optimal intracellular killing activity against all tested MAC strains was achieved with clofazimine. Compared to the standard regimen, the clofazimine-containing regimen significantly reduced CFUs in all organs and achieved marked reductions in lung inflammation. The replacement of rifampicin with clofazimine in the treatment regimen resulted in more favorable outcomes in an animal model of chronic progressive MAC-PI. Intriguingly, 2 weeks of treatment with the clofazimine-containing regimen reduced bacterial loads more effectively than 4 weeks of treatment with the standard regimen in M. avium-infected mice. Thus, the clofazimine-containing regimen also had a treatment-shortening effect.

9.
J Clin Biochem Nutr ; 65(3): 193-202, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31777420

RESUMO

Nitidine chloride (NC), a natural, bioactive, phytochemical alkaloid derived from the roots of Zanthoxylum nitidum, has been reported to exhibit anti-tumor activity against various types of cancer. However, the potential therapeutic role of NC in human cervical cancer has not yet been studied. We are the first to report that NC acts as a potential apoptosis-inducing agent for human cervical cancer in vitro. NC treatment of human cervical cancer cell lines induced caspase-mediated apoptosis, thereby reducing cell viability. Phospho-kinase proteome profiling using a human phospho-kinase array revealed that NC treatment phosphorylated Checkpoint kinase 2 (Chk2) at Thr68, which activates Chk2 in both cell lines. We also found that NC significantly affected the p53/Bim signaling axis, which was accompanied by mitochondrial membrane depolarization and cytochrome c release from the mitochondria into the cytosol. In addition, NC profoundly increased phosphorylation of the histone variant H2AX at Ser139, a typical marker of DNA damage. Taken together, these results provide in vitro evidence that NC can increase Chk2 activation, thereby acting as an attractive cell death inducer for treatment of human cervical cancer.

10.
FASEB J ; 33(5): 6483-6496, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753099

RESUMO

Bacillus Calmette-Guerin vaccine confers insufficient pulmonary protection against tuberculosis (TB), particularly the Mycobacterium tuberculosis (Mtb) Beijing strain infection. Identification of vaccine antigens (Ags) by considering Mtb genetic diversity is crucial for the development of improved TB vaccine. MTBK_20640, a new Beijing genotype-specific proline-glutamic acid-family Ag, was identified by comparative genomic analysis. Its immunologic features were characterized by evaluating interactions with dendritic cells (DCs), and immunogenicity and vaccine efficacy were determined against highly virulent Mtb Beijing outbreak Korean Beijing (K) strain and HN878 strain in murine infection model. MTBK_20640 induced DCs via TLR2 and downstream MAPK and NF-κB signaling pathways, effectively promoting naive CD4-positive (CD4+) T-cell proliferation and IFN-γ production. Different IFN-γ response was observed in mice infected with Mtb K or reference H37Rv strain. Significant induction of T helper type 1 cell-polarized Ag-specific multifunctional CD4+ T cells and a marked Ag-specific IgG2c response were observed in mice immunized with MTBK_20640/glucopyranosyl lipid adjuvant-stable emulsion. The immunization conferred long-term protection against 2 Mtb Beijing outbreak strains, as evidenced by a significant reduction in colony-forming units in the lung and spleen and reduced lung inflammation. MTBK_20640 vaccination conferred long-term protection against highly virulent Mtb Beijing strains. MTBK_20640 may be developed into a novel Ag component in multisubunit TB vaccines in the future.-Kwon, K. W., Choi, H.-H., Han, S. J., Kim, J.-S., Kim, W. S., Kim, H., Kim, L.-H., Kang, S. M., Park, J., Shin, S. J. Vaccine efficacy of a Mycobacterium tuberculosis Beijing-specific proline-glutamic acid (PE) antigen against highly virulent outbreak isolates.


Assuntos
Antígenos de Bactérias , Surtos de Doenças/prevenção & controle , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose Pulmonar , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Células Th1/imunologia , Células Th1/patologia , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/prevenção & controle
11.
J Cancer Res Ther ; 14(Supplement): S576-S582, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30249871

RESUMO

AIM OF STUDY: To investigate the apoptotic event of trichostatin A (TSA) and its associated mechanism in oral squamous cell carcinoma (OSCC) lines. MATERIALS AND METHODS: HSC-3 and Ca9.22 cell lines were evaluated using a trypan blue exclusion assay, histone isolation, soft agar assay, live/dead assay, 4%,6-diamidino-2-phenylindole staining, JC-1 mitochondrial membrane potential (MMP) assay, and Western blot analysis to demonstrate the anticancer activity of TSA. RESULTS: TSA decreased OSCC cell viability and proliferation without affecting the histone acetylation. TSA-induced caspase-dependent or -independent apoptosis according to cell types, TSA enhanced the expression levels of Bim protein by dephosphorylating ERK1/2 pathway in HSC-3 cells. TSA also damaged MMP and increased cytosolic apoptosis-inducing factor (AIF) in Ca9.22 cells. CONCLUSION: The present study suggests that TSA may be a potential anticancer drug candidate for the treatment of OSCC through the induction of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Ácidos Hidroxâmicos/administração & dosagem , Neoplasias Bucais/tratamento farmacológico , Acetilação/efeitos dos fármacos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Bucais/genética , Neoplasias Bucais/patologia
12.
J Oral Pathol Med ; 47(9): 823-829, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29924888

RESUMO

BACKGROUND: We have shown previously that nitidine chloride (NC) induces apoptosis via inhibition of signal transducer and activator of transcription 3 (STAT3). However, its downstream molecules are not fully understood yet. Here, we report that NC as STAT3 inhibitor downregulates myeloid cell leukemia-1 (Mcl-1) protein in HSC-3 and HSC-4 human oral squamous cell carcinoma (OSCC) cells and a nude mouse tumor xenograft model. METHODS: This study investigated the effects of NC on Mcl-1 expression in HSC-3 and HSC-4 cells using Western blotting, RT-PCR, and dual-luciferase assay. Immunohistochemistry was employed to evaluate Mcl-1 expression levels in mouse tumor tissues. Construction of Mcl-1 overexpression vector and transient transfection was done to test the apoptosis of HSC-3 cells. RESULTS: Nitidine chloride did not affect either mRNA level or promoter activity of Mcl-1, and the decrease in Mcl-1 protein by NC was caused by lysosome-dependent degradation, but not proteasome-dependent degradation. The overexpression of Mcl-1 protein in OSCC cell lines was sufficient to block the induction of apoptosis. In addition, NC strongly reduced the expression level of Mcl-1 protein compared with other STAT3 inhibitors such as cryptotanshione and S3I-201 in OSCCs. CONCLUSIONS: Our findings suggest that NC triggers apoptosis via lysosome-dependent Mcl-1 protein degradation and could be chosen as a promising chemotherapeutic candidate against human OSCCs.


Assuntos
Antineoplásicos , Benzofenantridinas/farmacologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Expressão Gênica/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteólise/efeitos dos fármacos , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Humanos , Lisossomos/patologia , Camundongos , Camundongos Nus , Neoplasias Bucais/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/fisiologia
13.
Tumour Biol ; 40(5): 1010428318776170, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29764340

RESUMO

Silymarin, a standardized extract from milk thistle fruits has been found to exhibit anti-cancer effects against various cancers. Here, we explored the anti-cancer activity of silymarin and its molecular target in human oral cancer in vitro and in vivo. Silymarin dose-dependently inhibited the proliferation of HSC-4 oral cancer cells and promoted caspase-dependent apoptosis. A human apoptosis protein array kit showed that death receptor 5 may be involved in silymarin-induced apoptosis, which was also shown through western blotting, immunocytochemistry, and reverse transcription-polymerase chain reaction. Silymarin increased cleaved caspase-8 and truncated Bid, leading to accumulation of cytochrome c. In addition, silymarin activated death receptor 5/caspase-8 to induce apoptotic cell death in two other oral cancer cell lines (YD15 and Ca9.22). Silymarin also suppressed tumor growth and volume without any hepatic or renal toxicity in vivo. Taken together, these results provide in vitro and in vivo evidence supporting the anti-cancer effect of silymarin and death receptor 5, and caspase-8 may be essential players in silymarin-mediated apoptosis in oral cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Bucais/tratamento farmacológico , Silimarina/farmacologia , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocromos c/metabolismo , Humanos , Neoplasias Bucais/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
14.
Oncotarget ; 8(53): 91306-91315, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29207645

RESUMO

Nitidine chloride (NC) is a natural alkaloid compound derived from the plant Zanthoxylum nitidum and is known for its therapeutic anticancer potential. In this study, we investigated the effects of NC on growth and signaling pathways in human oral cancer cell lines and a tumor xenograft model. The apoptotic effects and related molecular targets of NC on human oral cancer were investigated using trypan blue exclusion assay, DAPI staining, Live/Dead assay, Western blotting, Immunohistochemistry/Immunofluorescence and a nude mouse tumor xenograft. NC decreased cell viability in both HSC3 and HSC4 cell lines; further analysis demonstrated that cell viability was reduced via apoptosis. STAT3 was hyper-phosphorylated in human oral squamous cell carcinoma (OSCC) compared with normal oral mucosa (NOM) and dephosphorylation of STAT3 by the potent STAT3 inhibitor, cryptotanshinone or NC decreased cell viability and induced apoptosis. NC also suppressed cell viability and induced apoptosis accompanied by dephosphorylating STAT3 in four other oral cancer cell lines. In a tumor xenograft model bearing HSC3 cell tumors, NC suppressed tumor growth and induced apoptosis by regulating STAT3 signaling without liver or kidney toxicity. Our findings suggest that NC is a promising chemotherapeutic candidate against human oral cancer.

15.
Arch Oral Biol ; 73: 1-6, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27632413

RESUMO

OBJECTIVE: The mimetic BH3 ABT-737, a potent inhibitor of anti-apoptotic Bcl-2 family proteins, has potential as anti-cancer drug in many cancers. Recently, patients treated with ABT-737 have developed drug tolerance during cancer therapy. Therefore, we examined whether ABT-737 is effective in killing MC-3 and HSC-3 human oral cancer cells either alone or in combination with the oncogenic kinase inhibitor, sorafenib. DESIGN: The potentiating activities of sorafenib in ABT-737-induced apoptosis were determined using trypan blue exclusion assay, DAPI staining, cell viability assay and Western blot analysis. RESULTS: Combined use of ABT-737 and sorafenib synergistically suppressed cell viability and induced apoptosis compared with either compound individually. The combination of ABT-737 and sorafenib altered only Bax and Bak proteins and their activations, resulting in mitochondrial translocation of Bax from the cytosol. Additionally, combination treatment-mediated apoptosis may be correlated with ERK and STAT3 pathways. CONCLUSIONS: These results suggest that sorafenib may effectively overcome ABT-737 resistance to apoptotic cell death, which can be a new potential chemotherapeutic strategy against human oral cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Niacinamida/análogos & derivados , Nitrofenóis/farmacologia , Compostos de Fenilureia/farmacologia , Sulfonamidas/farmacologia , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Combinada , Humanos , Neoplasias Bucais , Niacinamida/farmacologia , Piperazinas/farmacologia , Sorafenibe , Coloração e Rotulagem
16.
J Nanosci Nanotechnol ; 16(5): 5133-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483887

RESUMO

BaTiO3/Cu2O and BaTiO3/Cu2O/Au complexes were prepared from CuCl2, HAuCl4 solution, and BaTiO3 by the solution method. BaTiO3 particles were dispersed in a CuCl2 solution, and the BaTiO3/CuO complex was produced through crystallization of CuO onto the BaTiO3 surface by hydrolysis of CuCl2 in the first stage. After the reaction, CuO was reduced to Cu2O by treatment with glucose, thereby yielding the BaTiO3/Cu2O complex. The BaTiO3/Cu2O/Au complex was prepared by treating the BaTiO3/Cu2O particles with HAuCl4. Under visible light, the obtained BaTiO3/Cu2O0/Au complex showed higher photocatalytic activity than the Degussa P-25sample. In addition, the BaTiO3/Cu2O complex showed excellent antipathogenic effect.


Assuntos
Aspergillus nidulans/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Fotoquímica/métodos , Antifúngicos/administração & dosagem , Antifúngicos/síntese química , Aspergillus nidulans/crescimento & desenvolvimento , Compostos de Bário/administração & dosagem , Compostos de Bário/química , Compostos de Bário/efeitos da radiação , Catálise/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Cobre/administração & dosagem , Cobre/química , Cobre/efeitos da radiação , Relação Dose-Resposta a Droga , Ouro/administração & dosagem , Ouro/química , Ouro/efeitos da radiação , Luz , Teste de Materiais , Nanopartículas Metálicas/efeitos da radiação , Titânio/administração & dosagem , Titânio/química , Titânio/efeitos da radiação
17.
J Clin Biochem Nutr ; 58(1): 40-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26798196

RESUMO

In the present study, the apoptotic effect of pycnogenol and its molecular mechanism in human oral squamous cell carcinoma HSC-3 cells were investigated. Pycnogenol significantly inhibited the viability of HSC-3 cells and suppressed neoplastic cell transformation in HSC-3 cells and TPA-treated JB6 cells. It caused caspase-dependent apoptosis evidenced by the increase in cleaved poly (ADP-ribose) polymerase and caspase 3 in a dose-dependent manner. Pycnogenol increased Bak protein by enhancing its protein stability whereas other Bcl-2 family members were not altered. In addition, the treatment with pycnogenol led to the production of reactive oxygen species and N-acetyl-l-cysteine almost blocked pycnogenol-induced reactive oxygen species generation. Taken together, these findings suggest that pycnogenol may be a potential candidate for the chemoprevention or chemotherapy of human oral cancer.

18.
Oncotarget ; 6(34): 35667-83, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26447615

RESUMO

To date, many different chemotherapeutic agents have been widely used as common treatments for oral cancers. However, their therapeutic effects have been disappointing, and these agents may have unwanted side effects. Among the many regulatory factors, overexpression of pro-survival Bcl-2 family members may promote resistance to chemotherapeutic drugs in many tumors. The BH3 domain-only proteins effectively antagonize their apoptotic activities. Therefore, there is substantial interest in developing chemotherapeutic drugs that directly target pro-survival Bcl-2 proteins by mimicking the BH3 domain and unleashing pro-apoptotic molecules in tumor cells. Among the numerous available small molecule BH3 mimetics, ABT-737, a potent small molecule that binds to Bcl-2/Bcl-xL with high affinity, has anti-tumor activity in a wide variety of cancer cells. However, the effects of ABT-737 on human oral cancers and the underlying molecular mechanisms have not previously been elucidated. In the present study, we observed that inactivation of the ERK1/2 signaling pathway using ABT-737 dramatically increased the expression of pro-apoptotic protein Bim via transcriptional and/or posttranslational regulation, in a cell type-dependent manner, inducing mitochondria-mediated apoptosis of human oral cancer cells. To the best of our knowledge, this is the first demonstration of the antitumor effects of ABT-737 on human oral cancers.


Assuntos
Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Carcinoma Mucoepidermoide/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Nitrofenóis/farmacologia , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína 11 Semelhante a Bcl-2 , Biomimética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Terapia de Alvo Molecular , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
19.
Mol Plant Microbe Interact ; 28(3): 319-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25372119

RESUMO

In fungi, genes involved in biosynthesis of a secondary metabolite (SM) are often located adjacent to one another in the genome and are coordinately regulated. These SM biosynthetic gene clusters typically encode enzymes, one or more transcription factors, and a transport protein. Fusaric acid is a polyketide-derived SM produced by multiple species of the fungal genus Fusarium. This SM is of concern because it is toxic to animals and, therefore, is considered a mycotoxin and may contribute to plant pathogenesis. Preliminary descriptions of the fusaric acid (FA) biosynthetic gene (FUB) cluster have been reported in two Fusarium species, the maize pathogen F. verticillioides and the rice pathogen F. fujikuroi. The cluster consisted of five genes and did not include a transcription factor or transporter gene. Here, analysis of the FUB region in F. verticillioides, F. fujikuroi, and F. oxysporum, a plant pathogen with multiple hosts, indicates the FUB cluster consists of at least 12 genes (FUB1 to FUB12). Deletion analysis confirmed that nine FUB genes, including two Zn(II)2Cys6 transcription factor genes, are required for production of wild-type levels of FA. Comparisons of FUB cluster homologs across multiple Fusarium isolates and species revealed insertion of non-FUB genes at one or two locations in some homologs. Although the ability to produce FA contributed to the phytotoxicity of F. oxysporum culture extracts, lack of production did not affect virulence of F. oxysporum on cactus or F. verticillioides on maize seedlings. These findings provide new insights into the genetic and biochemical processes required for FA production.


Assuntos
Proteínas Fúngicas/genética , Ácido Fusárico/metabolismo , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Proteínas Fúngicas/metabolismo , Ácido Fusárico/análise , Fusarium/metabolismo , Fusarium/patogenicidade , Deleção de Genes , Perfilação da Expressão Gênica , Genômica , Família Multigênica , Micotoxinas/análise , Micotoxinas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Plântula/microbiologia , Virulência
20.
Cell Biochem Funct ; 32(3): 229-35, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24037733

RESUMO

In the present study, we examined the effects of methanol extracts of Picrasma quassioides (MEPQ) on apoptosis in human cervical cancer cells. The results showed that MEPQ decreased the viability and induced caspase-dependent apoptosis in HEp-2 cells. MEPQ decreased specificity protein 1 (Sp1) in HEp-2 cells, whereas Sp1 mRNA was not changed. We found that MEPQ reduced Sp1 protein through proteasome-dependent protein degradation, but not the inhibition of protein synthesis. Also, MEPQ increased the expressions of Bad and truncated Bid (t-Bid) but did not alter other Bcl-2 family members. The knock-down of Sp1 by both Sp1 interfering RNA and Mithramycin A, Sp1 specific inhibitor clearly increased Bad and t-Bid expression to decrease cell viability and induce apoptosis. In addition, MEPQ inhibited cell viability and induced apoptotic cell death through the modulation of Sp1 in KB cells. These results suggest that MEPQ may be a potential anticancer agent for human cervical cancer.


Assuntos
Apoptose/efeitos dos fármacos , Picrasma , Extratos Vegetais/farmacologia , Fator de Transcrição Sp1/metabolismo , Neoplasias do Colo do Útero/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Metanol , Plicamicina/análogos & derivados , Plicamicina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Interferente Pequeno/genética , Solventes , Fator de Transcrição Sp1/genética , Neoplasias do Colo do Útero/patologia , Proteína de Morte Celular Associada a bcl/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...